Automatic Sapstain Detection in Processed Timber Through Image Feature Analysis
نویسندگان
چکیده
Sapstain is considered a defect that must be removed from processed wood. So far, research in automatic wood inspection systems has been mostly limited to dealing with knots. In this paper, we extract a number of colour and texture features from wood pictures. These features are then assessed using machine learning techniques via feature selection, visualization, and finally classification. Apart from average colour and colour opponents, texture features are also found to be useful in classifying sapstain. This implies a significant modification to the domain understanding that sapstain is mainly a discolourization effect. Preliminary results are presented, with satisfactory classification performance using only a few selected features. It is promising that a real world wood inspection system with the functionality of sapstain detection can be developed.
منابع مشابه
A New Approach towards Precise Planar Feature Characterization Using Image Analysis of FMI Image: Case Study of Gachsaran Oil Field Well No. 245, South West of Iran
Formation micro imager (FMI) can directly reflect changes of wall stratums and rock structures. Conventionally, FMI images mainly are analyzed with manual processing, which is extremely inefficient and incurs a heavy workload for experts. Iranian reservoirs are mainly carbonate reservoirs, in which the fractures have an important effect on permeability and petroleum production. In this paper, a...
متن کاملOn the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کاملAutomatic Detection and Localization of Surface Cracks in Continuously Cast Hot Steel Slabs Using Digital Image Analysis Techniques
Quality inspection is an indispensable part of modern industrial manufacturing. Steel as a major industry requires constant surveillance and supervision through its various stages of production. Continuous casting is a critical step in the steel manufacturing process in which molten steel is solidified into a semi-finished product called slab. Once the slab is released from the casting unit, th...
متن کاملFisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection
Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009